Mastitis in Dairy Production: Estimation of
Sensitivity, Specificity and Disease Prevalence
in the Absence of a Gold Standard

Caroline UHLER

Mastitis, a worldwide endemic disease of dairy cows, is an important cause of de-
creased efficiency in milk production. Early medical treatment can reduce the nonre-
versible losses in milk production caused by this infection. Various diagnostic tests for
mastitis are available, including a test measuring the electrical conductivity of milk
(MEC test), the industry standard of somatic cell counting (SCC test), a bacteriological
test, and a recently developed test measuring mammary associated amyloid A (MAA
test). None of these tests is considered a gold standard, however. The aim of the present
study was to determine which of these tests provides the best results, and at what cost,
to improve the efficiency of milk production. For this study, 25 cows were tested at all
four quarters of the udder with each of the aforementioned mastitis diagnostic tests.
Based on the data, the disease prevalence as well as the sensitivity and the specificity of
the four tests were estimated with a Bayesian approach by extending the Hui and Walter
model with two independent tests and two populations to a model with four partially
dependent tests and one population. This model was further combined with a receiver
operating characteristics analysis to estimate the overall test accuracy.

Key Words: Bayesian approach; Bayesian model averaging; Hui and Walter model;
Mastitis diagnostic tests; MCMC; RIMCMC; ROC curve.

1. INTRODUCTION

Defined as any inflammatory process in the mammary gland (International Dairy Feder-
ation 1987), mastitis occurs in two different forms: clinical and subclinical. Clinical masti-
tis involves clinical signs in the udder (e.g., reddening, swelling, pain, high temperature) or
visible changes in the milk (e.g., flakes, clots). The more important form, subclinical mas-
titis, can be detected only by laboratory analysis of parameters related to the inflammatory
process, such as somatic cell count. The present study focused on subclinical mastitis.
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The udder is divided into four biologically independent quarters, and mastitis is asso-
ciated with one of these quarters, not with the entire cow. Pathogens usually can be found
in infected quarters. Mastitis pathogens can be environmental pathogens, often associated
with unhygienic environmental conditions. In addition, some obligate contagious masti-
tis pathogens or commensals can be spread from cow to cow through unhygienic milking
practices. The udder is naturally protected from bacterial entry, but in cows bred for easier
milking, this natural protection is decreased, and bacteria can enter the udder more easily,
increasing the risk of mastitis.

In this study we investigated the diagnostic efficiency of four mastitis diagnostic tests: a
bacteriological test, somatic cell count (SCC), measurement of mammary-associated amy-
loid A (MAA), and measurement of electrical conductivity (MEC). We describe these tests
briefly here; more details have been provided by Whyte et al. (2004) and Hogeveen (2005).

BACTERIOLOGICAL TEST

In most cases, mastitis is caused by such bacteria as streptococci, staphylococci,
coagulase-negative staphylococci (CNS), and corynebacteria. The different pathogens re-
quire different antibiotics to achieve quick healing; thus, a bacteriological test may be
important. This test is a qualitative test; an udder quarter is considered to test positive if
the foregoing bacteria are found and negative otherwise. For the bacteriological test, con-
tamination from external sources can cause false-positive results, and errors in the agars
can inhibit the growth of bacteria and lead to false-negative results. In addition, the role
of corynebacteria and CNS as udder pathogens is not clear, providing another potential
source of false-positive test results. This test is the costliest of the four tests, at about
12 Swiss francs (CHF) per quarter.

SoMATIC CELL COUNT

This is the most widely used test for detecting mastitis and is very important in herd
management. The cells found in the milk are somatic cells for defense against the bac-
teria and stem from the blood. SCC is measured in cells per milliliter. An infection is
assumed when a specific concentration (normally 100,000 cells/mL of milk) is exceeded.
Both false-positive and false-negative results can occur on the farm, from incorrect attribu-
tion of samples due to improper storage or transport, and in the laboratory due to sample
misidentification, errors in counting (including improper calibration), or carry-over of cells
from a sample with high cell counts. The cost of this test is about 1.5 CHF per quarter.

MAMMARY-ASSOCIATED AMYLOID A

The initial response of the mammalian immune system to an infection is the produc-
tion of acute-phase proteins, which trigger the body’s defense and repair mechanisms. An
acute-phase protein, MAA is produced in the udder and helps trigger the cow’s immune
system to respond to an antigen. Usually, an infection is assumed when the concentra-
tion of MAA exceeds 400 ng/mL. The production of MAA can represent a response to
a bacterial infection, but may also result from physical damage or a stress situation, ex-
plaining the occurrence of false-positive test results. In addition, both false-positive and
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false-negative results can result from measurement and dilution errors. This test costs ap-
proximately 1.5 CHF per quarter.

MEASUREMENT OF ELECTRICAL CONDUCTIVITY

Measuring the electrical conductivity of milk to detect mastitis dates back to the first
half of the twentieth century. An infection of the udder causes tissue damage and increases
the electrical conductivity of the milk. Usually, an infection is assumed when the electrical
conductivity exceeds 5.5 milliSiemens. The conductivity can be affected by tissue damage
due to infection as well as by many other factors, including the course of lactation, milking
intervals, milk fat content, milk temperature, and foods ingested, possibly leading to false-
positive and false-negative results. The MEC test has the lowest cost, about 0.10 CHF per
quarter.

To get an idea of the damage caused by mastitis, Professor P. Riisch of the University
of Zurich has calculated an average annual cost of 350 CHF per cow for Swiss farmers
(Walkenhorst 2004). This amount includes 60 CHF for veterinary and medical treatment
and 50 CHF for premature replacement of cows weakened by mastitis. But the bulk of
this cost, the remaining 240 CHF, is attributed to decreased milk production and discarded
milk. Early treatment can decrease the nonreversible losses in milk production due to mas-
titis. Therefore, tests with a high probability of detecting mastitis when present (i.e., high
sensitivity) and of providing a negative result in noninfected cows (i.e., high specificity)
are needed. It would be simple to estimate the sensitivity and specificity of these tests if
a perfect test were available for comparison; however, a gold standard for the detection of
mastitis has not yet been established.

For estimating test accuracy in the absence of a gold standard, each test is customarily
evaluated against other tests with their own errors by applying the tests simultaneously
to each individual. Hui and Walter (1980) considered the case where two tests (both with
unknown sensitivity and specificity) were simultaneously applied to individuals from two
populations with differing disease prevalences. Assuming conditional independence of the
tests, they showed how the sensitivity and specificity of both tests, as well as the preva-
lence in both populations, can be estimated by the maximum likelihood method. Since
then, several other approaches have been developed for evaluating tests in the Hui and
Walter model. (See Enge, Georgiadis, and Johnson 2000 for a review of existing methods,
including the Bayesian approach.) In the present work we used the Markov chain Monte
Carlo (MCMC) methodology and performed the computations by Gibbs sampling. Gilks,
Richardson, and Spiegelhalter (1995) have provided a thorough introduction to MCMC
methods and their applications. Recently, Toft et al. (2007) discussed different tools for
assessing convergence of MCMC methods based on the Bayesian approach to the Hui and
Walter model.

The Hui and Walter model assumes conditional independence of the two tests; how-
ever, it is not uncommon to have data from conditionally dependent tests. Black and Craig
(2002) extended the Hui and Walter model using MCMC methodology to deal with such
data. They developed four models that vary in terms of the form of dependence and used
reversible-jump MCMC (RIMCMC) to move from one model to another. Recently, Toft,
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Jgrgensen, and Hgjsgaard (2005) reviewed the importance and implications of the assump-
tions of the Hui and Walter model. They criticized the work of Black and Craig based on
the fact that in their model the number of parameters exceeds the degrees of freedom. This
results in a lack of identifiability and implies that estimates cannot be reliably obtained
from the data.

To estimate the disease prevalence as well as the sensitivities and specificities of the
four mastitis diagnostic tests, in this work we extended the model introduced by Black and
Craig to a model with one population and four tests. But to get an identifiable problem,
we allowed at most pairwise dependence of the tests. From a biological standpoint, this
should be sufficient, because only the SCC and MAA tests measure similar biological
processes and thus could reasonably be expected to be dependent. Moreover, the model
was combined with a receiver operating characteristics (ROC) analysis to estimate the
overall accuracy of each test. Using these estimates, the optimal test for mastitis can be
found, allowing earlier detection of mastitis to increase the efficiency of milk production.

2. MODEL

2.1 NOTATION

When applying four tests to one population, the observed data can be classified into a
2 x 2 x 2 x 2 contingency table. Each cell holds the count of tested individuals with a given
combination of the four binary tests, T;, j = 1,2, 3, 4, where T} denotes the bacteriological
test, 7o denotes the SCC test, 73 denotes the MAA test, and 74 denotes the MEC test.
A negative result on the jth test is denoted by 7; = 0; a positive result, by 7; = 1.

The parameters of primary interest in diagnostic testing are disease prevalence, denoted
by 7, and test sensitivity and specificity, denoted by Se; and Sp;, j =1,2,3,4. Let D
denote the truly diseased status and D denote the nondiseased status. Prevalence is defined
as the probability of being truly diseased, that is, 7 = P (D). The sensitivity of the jth
test measures its ability to detect a disease when it is present, that is, Se; = P(T; = 1|D).
The specificity of the jth test measures its ability to provide a negative result in noninfected
individuals, that is, Sp; = P(T; =0|D).

If the true disease status of each individual were known, then each cell count n; j; of the
2 x 2 x 2 x 2 contingency table could be broken up into 7;jx = z;jki + Yijki» Where z;jx
is the number of truly diseased individuals and y;z; the number of nondiseased individuals
in a given cell. The outcome of the bacteriological test is denoted by i, the outcome of the
SCC test is denoted by j, the outcome of the MAA test is denoted by k&, and the outcome
of the MEC test is denoted by /. Instead of a single 2 x 2 x 2 x 2 table, the data then can
be summarized in two separate tables, one for each disease status. The estimates of disease
prevalence (), sensitivity (Se;, j =1,2,3,4), and specificity (Spj, j=1,2,3,4) then
can be easily calculated using the following formulas, where Z denotes the total number
of disease-positive individuals, Y denotes the total number of disease-negative individuals,
N denotes the total number of individuals, and the dot subscripts indicate the sum over that
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index:
. Z
T=—,
N
o Z1... =~ 2.1 =~ Z..1- =~ Z...1
Se; = —-, Sep; = —, Sez = —-, Seq = —-,
€1 7 €2 7 €3 7 €4 7
> Y0... > Y.0-- > -0- > Y...0
Sp; = —, Sp, = —, Sp; = —, Spy=—.
P1 1% P2 1% P3 1% P4 %

Unlike the situation considered in the last paragraph, in the data available for this study
the true disease status of each individual is unknown. Using Bayesian inference, these
unknown counts can be simulated to get posterior distributions and estimates of the para-
meters. The algorithm for doing this is given in Section 2.3.

2.2 DEPENDENCE STRUCTURE

As defined and discussed in more detail by Gardner et al. (2000), two tests are condition-
ally independent when the sensitivity (or specificity) of the second test does not depend on
whether the results of the first test are positive or negative in infected (or noninfected) in-
dividuals. This means that P(7, = 1|Ty =1, D)= P(T, =1|T; =0, D) = P(T, = 1| D).

Tests that measure similar biological processes are likely to be positively dependent
when conditioning on the true disease status. For example, two different tests measuring the
serum antibody responses to infectious agents will tend to follow a similar time-dependent
pattern. False-negative results on both tests are more likely early in the course of infec-
tion, when the concentration of antibodies is lower. In addition, false-positive serologic
responses due to vaccination or cross-reacting antibodies tend to be positively correlated
on different serologic tests.

Somatic cells and MAA are both produced by the body’s defense mechanisms, which as
explained earlier, could lead to a positive dependence between the SCC and the MAA tests.
There is no apparent biological relationship between other pairs of tests. This information
is considered in the model. The positive conditional dependence between the sensitivity of
the SCC test and the MAA test can be expressed as

parp =PI, =1,T3=1|D) > P(T» =1|D)P(T3 = 1|D),
and the dependence of test specificities can be expressed as
P.oop = P(Ta=0,T3 =0|D) > P(T» =0|D) P(T3 = 0| D).

Note that a dependence of test sensitivities does not necessarily imply a dependence of test
specificities and vice versa.

Thus the full conditional dependence model, where test responses are correlated for both
disease states, introduces two additional parameters p.11.|p and P00 with the constraints
D-11.|p > SepSesz and Poo b > Sp,Sps3, whereas the partial dependence models include
only one of these parameters. The model that includes only p.11.p is called the disease-
positive model, and the model with p o, 5 is called the disease-negative model. In the
independence model, p.i1..p = Se;Se3, and P00 b = Sp,Sps.

For each disease status D and D, the probability of being classified into each of the
16 cells of the contingency tables is denoted by p;jxp and p; ikl|D- These classification
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Table 1. Formulas for the probabilities p;jxi|p-

SepSes < p.q1.|p < min(Sey, Se3)

Poooo|p = (1 —Sep)(1 —Sex — Sez + p.11. p)(1 — Seq)
P1000|p = Se1 (1 — Sep —Sez + p.11.p)(1 — Seq)
potoojp = (1 —Sey)(Sez — p.y1.p)(1 — Seq)
p110o|p = Se1(Sez — p.11.p)(1 — Seq)

pootojp = (1 —Sey)(Sesz — p.11.p)(1 — Seq)
rio10|p = Seq(Sez — p.11.|p)(1 — Seq)

potiojp = (1 —Sep)p.q1.p(1 — Seq)

pi110|p =Seqp-11.|p(1 — Seq)

pooo1|p = (1 —Sep)(1 —Sex — Se3z + p.11.|p)Seq
p1oo1|p =Sej (1 —Sey —Se3 + p.11.|p)Seq
poto1|p = (1 —Sey)(Sez — p.11.p)Seq

piio1|p = Se1(Sex — p.11..p)Seq

poot1|p = (1 —Sey)(Sez — p.11.p)Seq

p1011|p =Sej(Se3 — p.11.|p)Ses

pot11p = (1 —Sep)p.11.|pSesq

P1111|D =Se1p.11.pSe4

probabilities are functions of the sensitivities and specificities of the four tests and of the
parameters p.11.|p and P00 b The formulas for the probabilities p;jxp are given in Ta-
ble 1. The probabilities p; ;5 are computed analogously.

To sum up, the structure of this model results in 11 parameters: one parameter for the
prevalence, four parameters each for the sensitivities and the specificities, and two parame-
ters for the dependence structure. But four tests and one population provide 15 degrees of
freedom, so the number of parameters does not exceed the number of degrees of freedom
and thus meets the requirements stipulated by Toft, Jorgensen, and Hgjsgaard (2005).

2.3 ALGORITHM

As in the model of Black and Craig (2002), in the present study we used a combination
of Gibbs sampling and Metropolis—Hastings to estimate the parameters. Initially, starting
values for the 11 parameters must be specified. Starting values for each parameter are
sampled from their prior distribution. We chose the beta distribution as the prior for the
sensitivities and specificities of the four tests, as well as for the prevalence (see Table 2).
Using beta distributions as the prior greatly simplifies calculations; moreover, beta distri-
butions can yield a large array of potential shapes. For the full conditional dependence
model, we must also define priors for the other two parameters, p.11.|p and P00 b Little a
priori knowledge of the degree of dependence is assumed, and thus a uniform distribution

Table 2. Prior distribution for each model quantity.

7w ~ Beta(ay, by)
Se; NBeta(asej,bSej), j=1,2,3,4 Sp; ~Beta(asp1,bspj), j=1,2,34
P-11.|p ~ Uniform(Se;Se3, min(Se;, Se3)) P00 p "™ Uniform(Sp, Sp3, min(Sp,, Sp3))
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is used. With this choice, the joint probability is equally likely to be anywhere between its
values for independence and those for complete positive dependence.

Given the observed counts n; i, the missing counts of the truly diseased individuals
consist of independently distributed binomial variates with

Zijki|nijk ~ Bin(mijxr, Pijki)s

where P;jy is the probability of being diseased given that the individual has test combi-
nation (i, j, k, ). Using the Bayes theorem leads to the following equation, through which
the probabilities P;ji; can be computed by substituting the formulas given in Table 1:

Piju=P(DIT1=i,Ty=j T3=k Ty=1)
=P(T1=i,T»h=j,T3=k,Ta=I1|D)P(D)
/(P(Ty =i,Ty=j,Ts =k, Ty =1|D)P(D)
+P(T1=i,Ty=j, T3 =k, Ty =1|D)P(D))

_ Pijkl| DT
PijkipT + Py p (1 — )

2.3.1 Independence Model

In this model, new values for the prevalence, the sensitivities and the specificities can
be sampled directly from their full conditional distributions with the foregoing computed
zZijki values. The full conditional distributions are given in Table 3.

New values for the prevalence, sensitivity, and specificity are sampled independently of
one another from these distributions. With this step, the first iteration of the algorithm for
the independence model is completed. The next iteration begins by computing the prob-
abilities P;ji; with the values of the model quantities from the preceding iteration. These
probabilities are then substituted into the conditional binomial distributions, the missing
Zijk’s are sampled, and, finally, new values for the model quantities are resampled from
their full conditional distributions.

Table 3.  Full conditional distributions of all model quantities in the independence model.

7w ~Beta(r|14+Z,14+ N — Z)

Seq ~ Beta(Seq |1 +z1..., 1 +2¢...)

Sep ~ Beta(Sep |1 +z.1.., 1 +2.9..)

Ses ~ Beta(Se3|1 +z..1., 1 +2z..0.)

Se4 ~ Beta(Seq|1 +z...1, 1 + z..0)

Sp; ~ Beta(Spy |1 +ng... — z0..., | +n1... —21...)
Sp, ~Beta(Spy |1 +n.g.. —z.0... 1 +n.1.. — 2.1..)
Sp3 ~ Beta(Sp3|1 +n.9. —z.0., | +n..1. — z..1.)
Spy ~ Beta(Spyl|l +n..0 —z..0, 1L +n...1 —z...1)
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2.3.2 Full Conditional Dependence Model

In the full conditional dependence model, a possible conditional dependence between
the SCC test and the MAA test is assumed. Because of the parameter space restric-
tions introduced by the additional parameters p.i1.p and P00 in this model, us-
ing just the Gibbs sampler and sampling directly from the full conditionals is difficult.
Therefore, a Metropolis—Hastings step for updating the parameters (Se;, Ses, p.11.p) and
(Sp2, Sp3s P.oo. ) is introduced. Note that this Metropolis—Hastings step involves only the
second and third tests.

If there were no restrictions on the probability vector pp := (p.oo.|p, P-10-|D> P-01-|D>
p-11.p) (resp. on the vector pj = (1’~00-|D’ Pa0 b Por b P-11~\[)))’ and a Dirichlet(1, 1,
1, 1) prior were used, then the full conditional distribution would be Dirichlet(z.go. +
1,z10. + 1,z01. + 1,2z.11. + 1) (resp. Dirichlet(n.qo. — z.00. + 1, n.10. — z.10. + 1, n.01. —
z.01- + 1,n.11. — z.11. + 1)). These distributions are used as proposal distributions in the
Metropolis—Hastings algorithm.

As explained by Black and Craig (2002), the first step is to generate the proposed
probabilities p7, := (p,*bo| D pf‘E)H D pf*lo.‘ D p_*”.| p) from the full conditional distribution
Dirichlet(z.g0. + 1, z.10. + 1, z.01. + 1, z.11. + 1). The next step is to compute the proposed
sensitivities, Sey = p-*lL\D + p-*10~|D and Sej = p-*11~\D + p?)LlD' If p~*11-|D > Se3Se}, then
move to the new proposed parameters with probability

P (move) = min(l, m.in(Sez, Se3) — SeySes ﬁ(s_e;<>a5e,—1 (1 _ Se;}<>b5e;—l);
min(Se3, Se3) — Se3Sej — Se; 1 — Se;

otherwise, do not update the parameters in this iteration. Updating P.00. B> Sp, and Sp;
works analogously. Finally, generate Sey, Se4, Spy, Spy4, and 7 from the full conditional
distributions given in Table 3 as in the independence model.

Thus far, the independence and the full conditional dependence models have been con-
structed. Updating the partial dependence models is accomplished analogously. Because
the dependence structure of the SCC and MAA tests is unclear, we want to combine all
four models. We account for this uncertainty by allowing the Markov chain to jump be-
tween the four models. This procedure is explained in the next section and was discussed
in more detail by Hoeting et al. (1999).

2.4 BAYESIAN MODEL AVERAGING

Let M be the independence model, M> be the partially dependent disease positive
model, M3 be the partially dependent disease negative model and M4 be the full conditional
dependence model. Note that these expressions are related only to the dependence structure
of the second and third tests. Thus the models are as follows:

M: p-11p =SexSe3, P p = Sp2Sps.
M: p-11p > SeaSe3, P p = Sp2Sps.
Ms: p11p =SexSe3,  Pp.oo p > SP2Sps.

My: D-11.|p > SexSes, P00 b > SP2Sp3-
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Next, we construct a Markov chain on these four models. Each model is a priori assumed
to be equally likely, and again the Metropolis—Hastings algorithm is used.

o First, consider a move from M; to M> or from M3 to M4. This involves switching
from p.11.p = SexSez to p.i1.p > SezSes. Thus we sample y from the uniform
distribution U(0, min(Se;, Se3z) — Se>Se3) and define pfkl]‘|D = SexSe3 + y. As ex-
plained by Gilks, Richardson, and Spiegelhalter (1995), the probability of a move
from the current point #’~! to a candidate point * in the Metropolis—Hastings algo-
rithm is

* t—1 g%
P(move):min<1 pE*|y)p(@'16%) )

T p@y)p©*et1)
. P10 p©*)  p©'~'16%)
=min( 1, —1 —1 —1 )’
pIOT=H)p@'=") p(0*16"~7)
where y denotes the observed data. Thus the acceptance probability for a move from
M; to M5 or from M3 to My is
p(n|Ma, 02) p(62|M>) p(M>) 1 )
" p(n|My,01)p(61|M1)p(My) (min(Sey, Sez) — SeiSep)~!
( P(Z|S€1,562,P»11-|D)>
=min| 1,
P(z|Sey, Sez)
where 61 = {Se;, Ses}, 0> = {Sez, Ses, p.11.|p}, and n and z denote the table n;jy

P (move) = min (1

@2.1)

and the table z;jx/, where i, j, k,1 € {0, 1}. For the second equality, we assume that
the prior probability of each model is %, that 61 and 6, affect only the truly diseased
individuals, and that

p(02|M>) = p(p.11.p|Sez, Sez, M) p(61|My).
e For the reverse moves from M, to M or from My to M3, define p,*“_‘D = Se»Ses.
The acceptance probability is computed analogously to (2.1):
P (z|Ses, Sez)
’ P(Z|SeZ,Se3»I’~1]<|D)>.

e Similar acceptance probabilities are used to move between M and M3 or between
My and My.

P (move) = min (1

Therefore, one iteration of the algorithm comprises first updating the parameters, as ex-
plained in Section 2.3, and then jumping between the models, as explained in this section.
The entire process is iterated until convergence.

3. DATA ANALYSIS

3.1 ESTIMATING SENSITIVITY, SPECIFICITY, AND DISEASE PREVALENCE

The Appendix presents a data set comprising test results for 25 cows from an English
farm. From a biological standpoint, mastitis is related not to the cow, but rather to the
individual udder quarters, which are individual units. Thus for the purpose of this analysis,
it is assumed that 25 cows result in 100 independent samples.
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Table 4. Data matrix resulting from the thresholds 100 for the SCC test, 400 for the MAA test and 5.5 for the

MEC test.
nopoo = 41 ny000 =7 noj00 =1 nyj0 =1
ngo10 =2 n1010 =2 no110 =2 nyp0 =3
nopo1 =26 ny001 =8 no1o1 =0 n1101 =0
ngo1; =0 nyo11 =0 nopp =1 ny111 =6

The bacteriological test differs from the other diagnostic tests in one main element.
The bacteriological test is a qualitative test, which makes it easy to distinguish between
a positive test result and a negative test result. A test is positive if a bacterium grows
and negative otherwise. The other three tests are quantitative tests, requiring a threshold
to distinguish between negative and positive test results. For the analysis of this data set,
the usual thresholds were used: 100 for the SCC test, 400 for the MAA test, and 5.5 for
the MEC test. These thresholds led to the 2 x 2 x 2 x 2 data matrix given in Table 4.

This data matrix served as the input in the algorithm described in the previous section
to get estimates of the sensitivities and specificities of the four tests, as well as of the
disease prevalence. Because no prior information about the model quantities was avail-
able, a Beta(1, 1) prior was used for the sensitivities and specificities of the four tests
as well as for the prevalence. (See Enge, Georgiadis, and Johnson 2000 for a discussion
on the specification of priors.) Three Markov chains each with 20,000 iterations but with
different starting values were generated, and the tools described by Toft et al. (2007) and
Gilks, Richardson, and Spiegelhalter (1995) were used to assess convergence of the chains.
This included plotting the running mean of multiple sequences with overdispersed starting
points and analyzing the Gelman—Rubin statistic and the autocorrelations. After an initial
burn-in of 2000 iterations was discarded, only every seventh sample of each chain was
saved because of high autocorrelations. These samples of the three chains were then com-
bined to generate summary statistics.

The summary statistics of the combined chains are given in Table 5. The first test (with
parameters Se; and Sp;) is the bacteriological test, the second test (with parameters Se
and Sp,) is the SCC test, the third test (with parameters Ses and Sp;) is the MAA test, and
the fourth test (with parameters Se4 and Sp,) is the MEC test. Note that in the summary
statistics, the standard deviations of all four sensitivities are significantly greater than the
standard deviations of the specificities. This indicates that the estimates for the specificities
are more accurate than those for the sensitivities. This is discussed further in Section 4.

The summary statistics also reveal that the MEC test has poor accuracy compared with
the other three tests. But here we are comparing the test accuracies only for a specific set of
thresholds; an ROC analysis is needed to identify which test is the overall most accurate.
This analysis is presented in Section 3.2.

Finally, we are interested in the dependence structure of the SCC and MAA tests. More
can be learned about the dependence structure by analyzing the posterior densities shown
in Figure 1. The posterior density of the parameter “model” indicates that the chains tend
to remain longer in model 4 (the full conditional dependence model) than in the other three
models. The model probabilities are 0.17 for model 1, 0.21 for model 2, 0.26 for model 3,
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Table 5. Summary statistics of the combined chains.

Mean sd 2.5% 97.5%
b4 0.17 0.06 0.07 0.32
Se; 0.76 0.13 0.49 0.98
Sep 0.73 0.17 0.36 0.98
Ses 0.78 0.16 0.40 0.99
Sey 0.51 0.14 0.25 0.79
Sp; 0.82 0.05 0.72 0.94
Spa 0.96 0.03 0.89 1.00
Sp3 0.95 0.03 0.87 1.00
Sp4 0.61 0.05 0.50 0.71
P-11|D 0.62 0.18 0.24 0.91
P.00-1D 0.92 0.04 0.83 0.98
dse 0.32 0.35 0 0.96
dsp 0.34 0.34 0 0.95

NOTE: The sample means and standard deviations are given in the first two columns, and quantiles are given in
the other columns. The medians of the disease prevalence, the sensitivities, the specificities, and the parameters
p-11.|p and P00 b lie within 0.03 of the mean. The medians of the parameters dse and dgp lie within 0.15 of
the mean.

and 0.36 for model 4. Thus the SCC and MAA tests seem likely to have some degree
of conditional dependence. In what follows, we evaluate whether or not this tendency is
significant.

As suggested by Black and Craig (2002), the degree of dependence can be evaluated by
analyzing dse and dsp, defined as follows:

11D — SexSes
min(Se,, Se3) — SesSes’

P.00-1p — SP2SP3
min(Sp,, Sps) — Sp,Sp;”

These parameters, which range between 0 and 1, represent the degree of dependence, with

dse :=

dsp =

0 indicating independence and 1 indicating complete dependence. These parameters were
added to the MCMC simulation, leading to the summary statistics given in Table 5. We
compared these distributions with the corresponding distributions resulting from indepen-
dent data by comparing their means and medians. To do this, we generated 100 sam-
ples from the independence model with & = 0.17, Se; = 0.76, Se, = 0.73, Se3 = 0.78,
Seq = 0.51, Sp; = 0.82, Sp, =0.96, Sp; = 0.95, and Sp, = 0.61 and computed the pos-
terior densities of the parameters dse and dsp for each sample using the Markov chain
simulation described earlier.

The values for dse and dsp obtained from the real data are quite likely under the inde-
pendence model, because

p(mean of ds. from independence model > mean of dse from real data) = 0.07,
p(mean of ds, from independence model > mean of dsp from real data) = 0.09,

p(median of dse from independence model > median of ds. from real data) = 0.06,
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Posterior densities of each parameter for the three Markov chains A, B, and C.
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and

p(median of dsp, from independence model > median of dsp from real data) = 0.07.

Therefore, the assumption of independent tests seems reasonable. Because we assumed
only a probable dependence between the SCC and MAA tests, we can conclude that all
tests are independent.

3.2 ROC ANALYSIS

For the foregoing analysis, the decision thresholds were fixed (at 100 for the SCC test,
400 for the MAA test, and 5.5 for the MEC test). It is important to note that the sensitivity
can be improved by lowering the value of the decision threshold, that is, by making the
criterion for a positive test less strict. On the other hand, the specificity can be improved by
increasing the value of the decision threshold, that is, by making the criterion for a positive
test more strict. Thus the sensitivity and specificity of a test are inherently linked; as one
increases, the other decreases. So when describing a diagnostic test, both sensitivity and
specificity must be reported, along with the corresponding decision threshold. An ROC
curve is a plot of the sensitivity against the false-positive rate, defined as 1-specificity.
Each point on the graph is generated by a different decision threshold. Thus the ROC
curve describes the diagnostic accuracy of a test apart from the decision thresholds. (See
Zhou, Obuchowski, and McClish 2002 for an introduction to the ROC curve.)

The empirical ROC curves for the three quantitative mastitis diagnostic tests—the SCC
test, the MAA test, and the MEC test—are presented in Figures 2, 3, and 4. The different
decision thresholds are denoted by c. The points corresponding to the decision thresholds
used for the summary statistics in Section 3.1 are printed in bold. Because the bacteriolog-
ical test is a qualitative test, the decision threshold, and consequently the sensitivity and
specificity, of the test are invariant; therefore, drawing the ROC curve makes no sense for
this test.

The closer the curve follows the left-hand border and then the top border of the ROC
space, the more accurate the test. The closer the curve comes to the diagonal of the ROC
space, the less accurate the test. Therefore, the area under the ROC curve is a measure of
test accuracy. It summarizes the accuracy of a test by a single number and is invariant to
the prevalence of the disease. The area under the ROC curve can be computed very easily
by constructing trapezoids under the curve and summing their areas. Table 6 gives these
areas for each quantitative test. The table shows that accuracy of the SCC and MAA tests
was excellent, whereas that of the MEC test was very poor.

Given the ROC curves in Figures 2, 3, and 4, computing the optimal decision threshold
would be very interesting. Note that the optimal threshold depends on the disease preva-
lence and economic costs. It is remarkable that the standard decision thresholds of the SCC
test (¢ = 100) and the MAA test (c = 400) result in operating points situated in the lower
left of the ROC curve. These decision thresholds are optimal only if the prevalence is small
and/or if treatment for the disease is harmful to healthy individuals and of little benefit to
diseased individuals.
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Figure 2. ROC curve of the SCC test with 95% credible interval.

4. DISCUSSION

The farm analyzed in this study had a quarter prevalence of mastitis of 17%. In other
studies, the quarter prevalence of mastitis in Europe has been estimated to be about 20%.
Thus the farm analyzed herein was close to the average.

The MEC test was cheap to perform but, as expected, exhibited very low sensitivity and
specificity. The high probability of false negatives and false positives stems from the fact
that electrical conductivity is influenced not only by mastitis, but also by many other fac-
tors, including the course of lactation, milking intervals, milk fat content and temperature,
and foods ingested. The bacteriological test achieved only moderately good results and is
very expensive. The MAA and SCC tests have the same moderate costs and demonstrated
very good accuracy.

The summary statistics reveal a relatively high standard deviation of the sensitivities and
show that the estimates of the sensitivities were less accurate than those of the specificities.
This can be explained by the fact that information concerning sensitivity can come only
from infected quarters, and because quarter prevalence was estimated as about 17%, only
about 15-20 quarters were actually infected. This is too small a sample size to achieve
good estimates with a small standard deviation. In future studies, this analysis should be
repeated with a larger data set.
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Figure 3. ROC curve of the MAA test with 95% credible interval.

The ROC analysis reveals minimal differences in the overall test accuracy of the SCC
and MAA tests. But because of the relatively high standard deviation of the estimates and
the fact that further data points and estimates could change the area under the ROC curve
slightly in either direction, a definitive statement on the overall accuracy of these tests is
not possible. The ROC analysis also shows that, depending on the decision threshold, the
MAA or SCC test could perform better; however, the optimal decision threshold can be de-
termined only with knowledge of the economic costs of treating a false-positive compared
with not treating a false-negative. Unfortunately, such data remain unavailable.

The present analysis is based on the assumption that the four quarters of a cow are
independent units and thus result in four independent samples. This assumption was ver-
ified using the chi-squared goodness-of-fit test. The resulting p-value was significant for
the bacteriological test (p = 0.012) and for the MEC test (p = 0.008), whereas the null
hypothesis of independent quarters was not rejected for the other two tests. As explained
earlier, the electrical conductivity is affected not only by mastitis infection, but also by
many other factors including the course of lactation, milking intervals, milk fat content
and temperature, and food types ingested. These factors influence all four quarters simi-
larly. This may explain the highly significant p-value for the MEC test. But the MEC test
has very poor accuracy and thus is used only rarely to diagnose mastitis in practice. The
bacteriological test also had a significant p-value, but taking into account the dependence
of the quarters would result in 25 independent samples (1 for each cow), instead of 100
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Figure 4. ROC curve of the MEC test with 95% credible interval.

samples. An analysis on the cow level instead of on the quarter level would require more
data, which are not available. To overcome this problem, one could also formulate more
complex models, such as a mixed-effects model with an additional parameter for the cow,
gathering the correlation between the quarters.

When the results of four or more diagnostic tests are available, alternative methods of
estimating the test accuracy are available, such as ordinary likelihood and the EM algo-
rithm. We chose a Bayesian approach here because using RIMCMC not only provides
estimates of the test accuracy and the disease prevalence, but also allows an analysis of
the dependence structure between the SCC and MAA tests. Note that the ample degrees of
freedom in our model compared with the original model of Black and Craig results from
the fact that only partial pairwise dependencies are assumed and tested. Testing all pairwise
dependencies would lead to a lack of degrees of freedom, similar to the model of Black
and Craig. Thus our proposed model is useful when partial dependencies are suspect.

Table 6. Areas under the ROC curves for each quantitative test.

SCC test: 0.91
MAA test: 0.89
MEC test: 0.60
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Further research requires the collection of more data, with the prime aim of achieving
more precise estimates. In a first step, it is most important to collect data on the overall
economic damage of mastitis. There is little scientific literature concerning the economics
of mastitis, and much of what exists focuses on one particular treatment or element and
its economic damage or benefit. Moreover, most studies use only simulation modeling,
rather than actual data, to estimate the economic effects of mastitis. (See the discussion in
Hogeveen 2005, which reflects the current knowledge on mastitis from all over the world,
as presented during the 4th IDF International Mastitis Conference in 2005.)

Farmers seem to have little awareness of the economic damage caused by mastitis, be-
cause these are mostly hidden costs. For example, the bulk of the damage is caused by
diminishing milk production, and many farmers believe this effect to be linked to a cow’s
age rather than to mastitis. Collecting data on the economic damage of mastitis is a prereq-
uisite for making farmers aware of the importance and the actual effects of mastitis in dairy
production. Once aware, farmers will be better motivated to perform the various diagnostic
tests for mastitis and to automatically supply data for a better-supported analysis of these
tests. This would allow an analysis on the cow level instead of on the quarter level, result-
ing in a more precise estimation of the sensitivity and specificity of the various diagnostic
tests, providing more reliable information on these tests’ accuracy.

Finally, computing the costs of true/false positive/negative results would allow selection
of the optimal decision threshold for each quantitative test and, consequently, a proper
comparison of the different mastitis tests. Thus, collecting data on the losses is strongly
recommended to estimate the economic effects and identify the overall optimal decision
thresholds to help minimize the economic damage of mastitis in dairy production.

APPENDIX: DATA

This table gives the data set used for the analysis of mastitis in this study. The 25 cows
from an English farm were tested at each quarter. The quarters are denoted by RF (right
front quarter), RH (right hind quarter), LH (left hind quarter) and LF (left front quarter).
Each cow was tested with the bacteriological test (Bact. test), the SCC test, the MAA
test, and the MEC test. Because the bacteriological test is a qualitative test, a O indicates
a negative test result. In most cases, mastitis is caused by bacteria, such as streptococci
(strep), staphylococci (staph), coagulase-negative staphylococci (CNS), or corynebacte-
ria (Cy). The number in front of the name of the bacteria denotes how many colonies grew.
The other three tests are quantitative tests.
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Bact. test SCC MAA MEC
Cow no. Quarter (qualitative test) (1000 cells/ml) (ng/ml) (milliSiemens)
2914 RF 20 CNS 13 0 4.6
2914 RH 0 230 1752 4.9
2914 LH 0 17 0 4.6
2914 LF 0 19 0 4.8
2904 RF 0 10 0 4.9
2904 RH 0 12 147 4.9
2904 LH 0 6 179 5
2904 LF 0 7 0 5
332 RF 0 13 0 4.6
332 RH 0 23 12 4.8
332 LH 0 12 0 4.7
332 LF 0 18 0 5
9390 RF 0 3 0 5.2
9390 RH 0 9 321 5.7
9390 LH 0 12 0 5.4
9390 LF 0 18 0 5.2
9393 RF 0 1229 2377 10.1
9393 RH 0 51 2470 5.1
9393 LH 0 91 5959 4.8
9393 LF 36 Cy 64 1313 4.8
415 RF 0 19 0 5.5
415 RH 0 47 0 5.6
415 LH 1 CNS 15 0 5.6
415 LF 10 Cy 9 0 5.4
9313 RF 10 Cy 41 37 5.2
9313 RH 0 16 0 5
9313 LH 0 45 0 5
9313 LF 10 CNS 45 0 5.2
127 RF 100 CNS 151 1274 4.3
127 RH 0 9 0 4.5
127 LH 0 844 679 4.5
127 LF 16 CNS 87 1370 49
9015 RF 0 47 0 4.7
9015 RH 0 27 0 5.1
9015 LH 0 131 339 5.1
9015 LF 30Strep 2925 6150 6.6
8128 RF 0 42 0 5.1
8128 RH 0 13 273 5.1
8128 LH 0 28 19 5.2
8128 LF 0 26 190 5.3
1049 RF 200 Staph 569 14652 6.2
1049 RH 0 10 0 5
1049 LH 0 8 0 4.8
1049 LF 0 9 0 4.8
8204 RF 0 9 86 5.2
8204 RH 0 16 28 5
8204 LH 0 15 0 4.6
8204 LF 0 12 0 4.5
9099 RF 0 4 0 5.4
9099 RH 0 5 0 5.3
9099 LH 0 7 0 5.2
9099 LF 0 7 0 5.4
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(Continued.)

Bact. test SCC MAA MEC
Cow no. Quarter (qualitative test) (1000 cells/ml) (ng/ml) (milliSiemens)
324 RF 0 16 98 5.5
324 RH 0 60 0 5.6
324 LH 100 CNS 65 0 5.6
324 LF 0 7 0 5.6
174 RF 0 30 0 5.1
174 RH 100 CNS 34 0 5.6
174 LH 0 53 0 5.5
174 LF 8Cy 38 347 5.8
381 RF 0 27 0 5.5
381 RH 0 20 0 5.1
381 LH 0 20 0 5
381 LF 0 16 50 5
9165 RF 0 12 110 5.4
9165 RH 0 12 0 5.5
9165 LH 0 8 0 5.5
9165 LF 0 13 0 5.5
2913 RF 200 CNS 494 1985 5.5
2913 RH 36 CNS 4 0 5.5
2913 LH 0 8 9 5.5
2913 LF 100 CNS 774 2064 5.6
892 RF 0 7 0 5.5
892 RH 0 10 0 5.5
892 LH 0 12 0 5.5
892 LF 0 12 0 5.5
7319 RF 200 CNS 136 172 5.1
7319 RH 48 CNS 54 0 5.2
7319 LH 0 6 0 4.9
7319 LF 0 3 0 4.9
6290 RF 37 CNS 36 0 6.1
6290 RH 28 CNS 118 415 6.1
6290 LH 0 6 0 5.9
6290 LF 0 7 0 6.1
375 RF 200 CNS 67 147 5.5
375 RH 66 CNS 48 0 5.8
375 LH 200 CNS 224 636 5.8
375 LF 0 9 0 5.5
7203 RF 0 6 0 5.8
7203 RH 0 5 0 5.5
7203 LH 0 9 0 5.4
7203 LF 0 14 8 5.5
8368 RF 0 29 196 6
8368 RH 0 33 0 6
8368 LH 0 12 50 5.9
8368 LF 0 15 99 5.6
118 RF 30 Cy 63 0 54
118 RH 45 Cy 216 1650 54
118 LH 28 Cy 254 570 54

118 LF 38 CNS 62 0 5.4
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